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Abstract

We developed MEBOCOST, a computational algorithm for quantitatively inferring metabolite-

based intercellular communications using single cell RNA-seq data. MEBOCOST predicted cell-

cell communication events for which metabolites, such as lipids, are secreted by one cell

(sender cells) and traveled to interact with sensor proteins of another cell (receiver cells). The

sensor protein on receiver cell might be cell surface receptor, cell surface transporter, and

nuclear receptor. MEBOCOST relies on a curated database of metabolite-sensor partners, which

we collected from the literatures and other public sources. Based on scRNA-seq data,

MEBOCOST identifies cell-cell metabolite-sensor communications between cell groups, in which

metabolite enzymes and sensors were highly expressed in sender and receiver cells,

respectively. Applying MEBOCOST on brown adipose tissue (BAT) showed the robustness of

predicting known and novel metabolite-based autocrine and paracrine communications.

Additionally, MEBOCOST identified a set of intercellular metabolite-sensor communications

that was regulated by cold exposure in BAT. Those predicted communicating metabolites and

sensors may play important roles in thermogenesis regulation. We believe that MEBOCOST will

be useful to numerous researchers to investigate metabolite-based cell-cell communications in

many biological and disease models, thus will be useful to remove critical barriers impeding

the development of new therapies to target these communications. MEBOCOST is freely

available at https://github.com/zhengrongbin/MEBOCOST.
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Introduction

Communication between cells, or cell-cell communication, is an integral part of cellular

function in a human tissue. It is a critical process that maintains the functions and hemostasis

of cells, organs, and intact systems . Abnormal cell-cell communications are key contributors

to many health conditions such as obesity , diabetes , heart disease , and cancer .

Communications between cells can be mediated by various types of molecules, e.g., proteins

and metabolites. Protein-mediated cell-cell communications, e.g., those mediated by protein

ligand-receptor pairs, have been the subject of many recent investigations based on single-cell

RNA sequencing (scRNA-seq) and many robust algorithms . Cell-cell metabolic reaction

between cells is also frequently analyzed by inferring a metabolite generated by an enzyme in

one cell and consumed as a substrate of another enzyme in a different cell . For instance, FFA

generated by lipase in adipocyte were reported to feed breast cancer cell, in which the FFA

becomes substrate of acyl-CoA synthetases and is converted into Fatty Acel-CoA . Several

algorithms were recently reported to detect the generation and consumption of metabolites

based on scRNA-seq data, thus indirectly enabled single-cell analysis of cell-cell metabolic

reaction, e.g., COMPASS , scFEA , scFBA . However, little computational resource is available

to investigate metabolite-sensor communications.

In a cell-cell metabolite-sensor communication, a metabolite generated by one cell travels to

another cell, which has a sensor protein that binds the metabolite to trigger a signaling

pathway . For instance, polyamine produced and secreted by EC was reported to be

sensed by β-adrenergic receptor on the surface of white adipocyte to regulate adiposity . In

contrast to enzymes that produce or consume the metabolite in a cell-cell metabolic reaction,

sensor proteins often do not consume the metabolite. Instead, sensor proteins often bind and

release the metabolites to trigger and end cell signaling, respectively. Due to this mechanistic

difference in the underlying biology, existing methods for analyzing cell-cell metabolic

reaction are not applicable to analysis of metabolite-sensor communications. Current

algorithms to analyze ligand-receptor communications were focused on protein or peptide

ligands and thus designed in ways that do not support analysis of metabolite-sensor

communications. Two major constraints on investigation of cell-cell metabolite-sensor

communications include the lack of a curated catalogue of reported metabolite-sensor pairs

and a paucity of robust methods to detect active metabolite-sensor communications in a

sample.

In this study, we addressed these most pressing constraints by developing a novel

bioinformatics technology, called MEBOCOST, which enables researchers to detect cell-cell

metabolite-sensor communications by analyzing transcriptomes of single cells. We applied

MEBOCOST to study cell-cell metabolite-sensor communications during thermogenesis, which
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is the process of heat production in brown adipose tissue in response to cold temperatures.

MEBOCOST successfully identified known and novel metabolite-sensor communications in

brown adipose tissue of mouse housed at cold temperature for 2 days. It further identified

cold-sensitive communication events of which the communication was reprogrammed between

mice housed under acute cold, chronic cold, room temperature, and thermal neutral

conditions. By delivering a novel technology to enable systematic analysis of cell-cell

metabolite-based communications, MEBOCOST will pave a new avenue for investigating the

molecular basis of development and diseases.

Results

The algorithm in MEBOCOST for detection of cell-cell metabolite-sensor communications

In metabolically active cells, expressed metabolic enzymes catalyze metabolic reactions to

produce many metabolites. Some metabolites can diffuse into extracellular space and function

as signaling molecules. Some extracellular metabolites can bind sensor proteins of spatially

nearby cells. We termed the cells that secret the metabolites as sender cells and the cells that

express the sensor proteins as receiver cells. Therefore, interactions between these

metabolites and sensor proteins could mediate communications between sender and receiver

cells in a paracrine manner. They may also mediate autocrine when the sender cell and

receiver cell are the same cell. To analyze metabolite-sensor communications between sender

and receiver cells, we developed a computational algorithm, called MEBOCOST, which takes

processed scRNA-seq data as input.

MEBOCOST integrates single cell RNA expression data and prior knowledge of extracellular

metabolites, metabolic enzymes, and metabolite-sensor partners to detect metabolite-sensor

communications (Figure 1). MEBOCOST predicts communication events of which the enzymes

and sensors of a metabolite were highly expressed in the sender and receiver cells,

respectively. To this end, MEBOCOST first extracted gene expression of the enzymes from

scRNA-seq data and inferred the presence of metabolite in a cell based on the enzyme RNA

expression (Supplementary Figure 1A, 1B, details in Methods and Materials). The enzyme

genes of extracellular metabolites were collected from the Human Metabolome Database

(HMDB)  which provides comprehensive annotation for 220,945 metabolites. Considering

that the relation between metabolite abundance and RNA expression level of metabolic

enzymes are often nonlinear, we do not expect to quantitatively calculate the abundance of

metabolite abundance. We instead aimed at inferring the presence of metabolite based on

scRNA-Seq data and interpret it as a qualitative result. Several algorithms have been reported

to accomplish such inference. Therefore, we designed MEBOCOST to take the output of these

algorithms as its input data. These algorithms include the scFBA , scFEA , and
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COMPASS  that each performed flux balance analysis in a unique way (Supplementary

Figure 1C). Whereas flux balance analysis is popular for conventional metabolic analysis, the

drawback is that it relies on some assumptions that might not be valid in many applications.

Different assumptions will lead to different results. Also, flux balance analysis is computation-

intensive and takes days or even weeks to do a genome-wide analysis of many single cells. In

contrast, the mean RNA expression of ligand protein and receptor protein was frequently used

to infer ligand-receptor communications, and is simple to calculate, biologically easy to

interpret, and computationally efficient. A gaussian mixture model was reported to infer

metabolite distribution based on expression of related enzymes . It is yet unclear which

methods might perform better when applied to infer presence of metabolite based on RNA-seq

data. Therefore, we performed a comparison between several methods, including scFEA,

COMPASS, and the geometric or arithmetic mean of expression levels of related enzymes in

GEMs from the HMDB database. The scFBA was excluded in this preliminary work because we

developed MEBOCOST based on a free open access policy, whereas scFBA is implemented

based on the commercial platform MATLAB. The gaussian mixture model is excluded because

no software or code was released to use this model. We used the four algorithms to analyze

the CCLE dataset , which includes metabolomics data of 225 metabolites and genome-

scale transcriptomics data from each of 928 cell lines. To measure the performance of each

algorithm, we calculated Jaccard index for the overlap between metabolites inferred based on

RNA expression and detected by metabolomics. Unexpectedly, despite being much simpler, we

found that the arithmetic and geometric mean algorithms perform better (greater Jaccard

index value) than the COMPASS algorithms and as good as the scFEA algorithm

(Supplementary Figure 1D). Further, the arithmetic and geometric mean algorithms are about

10 folds faster than scFEA and 1000 folds faster than COMPASS (Supplementary Figure 1E).

Arithmetic mean performs slightly better than geometric mean. Therefore, we designed

MEBOCOST to be compatible with all these four algorithms, but the arithmetic mean algorithm

will be the default option in MEBOCOST to infer metabolite presence.
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Supplementary Figure 1.

Estimation of metabolite presence based on the enzymes of metabolites.
A, The schematic plot showed for metabolite presence estimation. The grey star donated metabolite; the orange dots donated enzyme
genes for metabolic reactions. The line donated the relationship between enzyme genes and metabolite. The red lines indicated that
the metabolites are products of the enzymes. The blue lines indicated that the metabolites are substrates of the enzymes. B, The
number of enzymes used for metabolite inference was shown in the bar-plot. The x-axis was the interval of enzyme gene number per
metabolite, y-axis was he number of metabolites. C, The summary of flux-balance analysis tools for single-cell RNA-seq data together
with MEBOCOST. D, The accuracy of metabolite presence inference was shown for different methods. The RNA-seq data from CCLE
datasets were used for estimation; the matched metabolomics profiles of same samples from CCLE dataset were used as a ground
truth (detection) in this analysis. Metabolite balance result given by scFEA and uptake reaction prediction given by COMPASS were
included in this analysis, together with two straightforward methods in which arithmetic mean or geometric mean of enzyme gene
expression were used. The x-axis was the Jaccard index calculated based on the overlapping presence of metabolites between
estimation and detection. The higher Jaccard index indicates greater similarity between estimation and detection. E, The per-1000 cells
running time of four methods was shown. The x-axis were the four methods for estimation metabolite presence using scRNA-seq data.
The y-axis was the running time in seconds of the four methods.

https://www.biorxiv.org/content/biorxiv/early/2022/05/31/2022.05.30.494067/F6.large.jpg?width=800&height=600&carousel=1


2022/6/7 16:23 MEBOCOST: Metabolic Cell-Cell Communication Modeling by Single Cell Transcriptome | bioRxiv

6/30

Figure 1.

The algorithm in MEBOCOST to preform cell-cell metabolite-sensor communications using scRNA-seq data.
The prediction of cell-cell metabolite-sensor communications in MEBOCOST includes 5 steps. (1) The expression data and cell type
annotation from processed scRNA-seq were taken as the input data. (2) The prior knowledge of metabolite-sensor partners and
enzymes was incorporated into MEBOCOST. (3) The gene expression of metabolite enzymes was extracted from the scRNA-seq data.
The presence of metabolite was infered by taking the mean of enzyme gene expression. (4) The gene expression of metabolite sensors
was extracted from scRNA-seq data. (5) Calculation of communication score by taking the product of mean metabolite presence in
sender cell population and mean sensor gene expression in receiver cell population. (6) Shuffling single cell labels to generate a
statistical a null distribution to calculate p value for given communication score.

Meanwhile, expression values of sensor genes were extracted from the scRNA-seq data. Next,

the score calculated by scFEA or COMPASS as estimated likelihood of metabolite presence, and

sensor gene expression value, were averaged per cell groups. For a metabolite from a sender

cell group and its sensor protein from a receiver cell group, the metabolite-sensor

communication score will be calculated by taking the product of the average score of

metabolite presence in the sender cell group and the average expression of the sensor protein

in the receiver cell group. Such calculations were performed for each metabolite-sensor partner

and each pair of cell types. Therefore, each pair of cell types will be assigned with a set of

communication scores calculated for all the metabolite-sensor partners. A higher

communication score represents a higher likelihood of a metabolite-sensor communication

between the associated two cell types. Next, the significance of a communication score was

evaluated. For each metabolite-sensor communication, MEBOCOST generated a null statistical

distribution for the communication score by shuffling the cell labels of all cells in the scRNA-

seq data 1000 times. Permutation test was performed to calculate the p value for the

https://www.biorxiv.org/content/biorxiv/early/2022/05/31/2022.05.30.494067/F1.large.jpg?width=800&height=600&carousel=1
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communication score. The p values were further corrected to calculate false discovery rate

(FDR) using the Benjamini-Hochberg’s method .

A curated knowledge repository of enzyme-metabolite-sensor partners

To collect the extracellular metabolites and their enzymes (Figure 2A), we started from the

157 and 2,597 unique metabolites covered by scFEA and COMPASS, respectively. To focus on a

subset of well-annotated metabolites, we retrieved the metabolites that could be mapped to

those in the HMDB and further removed redundant metabolites that represent different names

of the same metabolite. This resulted in 1,240 metabolites with unique accession number

from the HMDB. As our interest is in cell-cell communications, we further narrowed down to

910 metabolites annotated as could be in extracellular space, blood, or cerebrospinal fluid. We

defined these metabolites as extracellular metabolites in this study. To infer metabolite

presence based on enzyme RNA expression, we next selected a subset of 441 metabolites that

have annotated upstream enzymes in metabolic reactions.

Figure 2.

The collection of extracellular metabolites, enzymes, and sensor proteins.
A, The pipeline of collecting extracellular metabolites and their enzymes as well as sensors. The extracellular metabolites and related
enzymes were collected based on the annotation at Human Metabolome Database where the biological location was extracellular
space, blood, and cerebrospinal fluid. The combination of text-mining and manual collection was performed to collect metabolite-
sensor partners. B, The source of metabolite-sensor partners in our collection. X-axis represented the source; y-axis represented the
number of metabolite-sensor partners. C, A pie plot to show the summary of sensor types of metabolite-sensor partners in our
collection. The percentage of each category and the number in each category were shown. D, A summary of the collected extracellular
metabolites. The columns correspond to each step of our focus in the collection. The rows were different classes of metabolites. The
number labeled in the plot showed the number of metabolites in that class. E, The association between metabolites and sensors were
summarized. Y-axis was the number of metabolite-sensor partners. The x-axis in the upper panel was the number of sensors per
metabolite, and x-axis in the lower panel was the number of metabolites per sensor.
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Although metabolite-sensor partners have been reported by many individual studies, few effort

were taken to thoroughly collect and curate the catalogue of reported metabolite-sensor

partners. To systematically collect reported metabolite-sensor partners, we developed a

computational pipeline for comprehensive literature mining (Figure 2A). We first retrieved the

233 transporters from the Transporter Classification Database , the 1,522 cell surface

receptor proteins from the UniProt database , and the 48 nuclear receptors from the Nuclear

Receptor Signaling Atlas (NURSA) database . Next, a text-mining approach was used to parse

the metabolite-sensor partners from the abstracts of publications in the PubMed database.

Briefly, an abstract will be selected if any pair of metabolite and sensor were co-mentioned in a

sentence from the abstract. The obtained metabolite-sensor partners together with the

corresponding abstracts were then subjected to three rounds of manual curation. At least

three curators read each abstract independently and filter out the metabolite-sensor partners

for which the evidence in the abstracts was insufficient. We also searched for annotated

metabolite-sensor partners in five annotation databases: Recon2 , HMDB , GeneCards ,

GPCRdb , and the Nuclear Receptor page of the Wikipedia site. Altogether, these

procedures result in 440 metabolite-sensor partners in total, of which 208, 149, 61, and 22

partners were collected from literature, Recon2, Wikipedia, and other sources, respectively

(Figure 2B). Among these partners, 53.2% was metabolite-transporter partners, 35.2% was

metabolite-cell surface receptor partners, and 11.6% was metabolite-nuclear receptor partners

(Figure 2C). There are 116 metabolites in these partners (Figure 2A). Most of the metabolites

(33%) in these partners are lipids and lipid-like molecules (Figure 2D). Organic acids and

derivatives also constitute a major proportion (25%) of the metabolites. Other major categories

include Nucleosides, nucleotides, and analogues (15%), Organoheterocyclic compounds (9%),

along with 10 other minor types. Interestingly, among the collected metabolite-sensor

partners, most metabolites each have one sensor, while some metabolites each have multiple

sensors (Figure 2E). Also, most sensors each have one metabolite, while some sensors each

have multiple metabolites. This database of metabolite-sensor partners represents a rich

research resource for the community to perform systematic analysis of metabolite-sensor

communications.

Scalable Computing Resource Usage and Robust Stability of MEBOCOST

To evaluate the usage of computing resource, we focused on a scRNA-seq dataset from brown

adipose tissue (BAT) of mouse housed at cold temperature (4 °C) for 2 days (Cold2), which

includes 33,470 cells in total. We applied MEBOCOST on the Cold2 data as well as a series of

down-sampled data to test the scalability. We found that the time and computer memory taken

by MEBOCOST had a linear correlation with the data size. The time to run MEBOCOST ranged

between 9 and 7 minutes when the number of cells was sampled down from 33,470 to 11,157

(Figure 3A), where the peak memory usage ranged from 2.5 to 1.5Gb (Figure 3B). We also
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evaluated the effect of sequencing depth on the performance of MEBOCOST. The result

indicated that the number of detected communications showed little decrease even after the

total cell numbers were sampled down to keep only 30% or the original data (Figure 3C). The

Jaccard index of overlapped communications between original data and down sampled data

were further calculated to evaluate the stability of the prediction. It was observed that the

Jaccard index was stably greater than 0.9 even when the number of total cells was sampled

down to 30% of the original data (Figure 3D). Taken together, MEBOCOST is computationally

efficient and showed great resilience to low sequencing depth.

Figure 3.

Robust performance and great scalability of MEBOCOST.
A, The running time in minutes was shown in bar-plot across a series number of total cells. The x-axis was the total number of cells in
the test. The y-axis was the running time taken by MEBOCOST. B, Peak memory usage was summarized and shown by bar-plot. The x-
axis was the total number cells included in the test. The y-axis was the peak memory in Gb. C. The number of communications
detected by MEBOCOST using scRNA-seq data with different number of total cells. The x-axis was the subsampling percentage of total
cells from original Cold2 BAT scRNA-seq data. The y-axis was the number of significant communications. A significant communication
was defined if FDR < 0.05 and the presence of metabolite and sensor was at least in 25% of the cells in the associated population. C,
The Jaccard index of overlapping communications between subsampling data and the original data was shown. The x-axis represented
subsampling percentage of total cells from the original Cold2 BAT scRNA-seq data, and the y-axis represented the Jaccard index score.

Metabolic communication in mouse brown adipose tissue

Brown adipose tissue (BAT) is a metabolically active tissue and is specialized to dissipate

chemical energy in the form of heat in thermogenesis. Cold exposure has been known as a

strong activator for BAT . It has been well accepted that cold exposure promotes not only

thermogenesis but also the process of adiposity or differentiation of brown adipocytes . The

process of brown adipocyte differentiation can be regulated by metabolites in BAT . We
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hypothesized that different cell types in BAT can communicate through metabolites, and some

of the metabolites can target to adipocytes in order to regulate the function and differentiation

process of adipocytes. Therefore, we performed scRNA-seq data for mouse BAT stromal

vascular fraction. The data is consisted of 107,679 high-quality cells (Supplementary Figure

2E) and 468 million reads from BAT of mice housed at different environmental temperatures

(Supplementary Figure 2A-D), including thermoneutral (TN) temperature (30 °C for a week),

room temperature (RT, 22 °C), or cold temperature (4 °C for 2 days and 7days, Cold2 and

Cold7). 20 cell types were identified. These include adipocytes, schwann cells, vascular cells,

immune cells, etc. Mature adipocytes are enriched with lipid droplets and tend to be excluded

from stromal vascular fraction, thus tend to be not captured by our scRNA-seq experiment.

Therefore, most of adipocytes in this scRNA-seq dataset were differentiating adipocytes.

Supplementary Figure 2.

Single cell RNA-seq data of mouse adipose tissue
A-D, The UMAP visualization of scRNA-seq data from four conditions, including TN (30 °C for a week), RT (room temperature),
Cold2(4 °C for 2 days), and Cold7 (4 °C for 7 days). E, The total number of cells in the scRNA-seq data from four conditions. The x-
axis was the conditions. The y-axis was the total number of high-quality cells in the scRNA-seq. F, The proportion of differentiating
adipocytes across four conditions. The x-axis was conditions, and y-axis was the proportion of differentiating adipocytes in the total
cells of the condition.

We first analyzed the BAT scRNA-seq data of Cold2 condition, as it contains more adipocytes

when compared to the other three conditions (Supplementary Figure 2E-F). In total, 1,296

metabolite-sensor communications were detected in Cold2 BAT (FDR < 0.05, Figure 4A). In

addition to paracrine, autocrine communications were also observed in many cell types such

as Adipocytes, VSM, EC, Lymphatic EC, NK, NMSC, MSC, Pdgfra  APC, etc. Among all

communications, adipocytes showed the largest number of communications compared to

other cell types (Figure 4A, B). Many of the communications sent to adipocytes showed higher

overall confidence score compared to other communications (Figure 4A). Notably, adipocytes

can be both senders and receivers in the metabolite-sensor communications in BAT. However,

+
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much greater number of communication events were observed for adipocytes as receiver cells

(256 events) than as sender cells (157 events) (Figure 4B). In addition, of all the adipocytes

related communications, autocrine of adipocytes happened much more frequently than

paracrine (Figure 4C). Such metabolite-sensor partners include Myristic acid ∼ Slc27a2, L-

Glutamine ∼ Slc1a5, L-Glutamine ∼ Slc38a2, L-Glutamine ∼ Slc3a2, Vitamin A ∼ Rbp4,

Eicosapentaenoic acid ∼ Ffar4, and Docosahexaenoic acid ∼ Ffar4, and so on (Figure 4D-E).

Some of the metabolites, sensors, and metabolite-sensor partners have been reported to be

involved in regulating the function of BAT. For example, eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA), a type of omega-3 fatty acid, were reported to play an important

role in brown adipocyte differentiation and thermogenesis . Particularly, Jiyoung Kim and

colleagues have reported that EPA can potentiate brown adipocyte thermogenesis dependent

on Ffar4 . The critical role of vitamin A transport has also been demonstrated in adipose

tissue browning and thermogenesis in cold exposure . Such importance was proven by

knocking out Rbp, which is a gene encoding the vitamin A transporter . Glutamine was

reported as a major source of de novo fatty acid synthesis in a brown adipocyte cell line , and

the utilization of glutamine was reported to be enhanced in brown adipose tissue by acute

cold exposure . Meanwhile, some metabolite-sensor communications were newly identified

by MEBOCOST in this study. Among those, myristic acid and Slc27a2 were particularly noticed,

since it had a highest communication score in adipocyte autocrine communications (Figure

4D, 4E). Interestingly, myristic acid was specifically and highly enriched in adipocytes when

compared to other cell types in Cold2 BAT (Supplementary Figure 3A). Similarly, the mRNA

expression of Scl27a2, a transporter for myristic acid, was also expressed specifically and

higher in the adipocytes than in other cell types (Supplementary Figure 3B). However, the

communication mediated by myristic acid and Scl27a2 in BAT were rarely studied. These

results showed that MEBOCOST not only recaptured known but also discovered new

metabolite-sensor communications for adipocyte autocrine.
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Supplementary Figure 3.

The presence of significant communication-associated metabolites and sensors in cell types in brown adipose tissue.
A, Violin plots showing the estimated metabolite presence for metabolites in significant communications predicted from Cold2 BAT
scRNA-seq data. The x-axis represented the cell types, and y-axis represented the metabolites. The color of violin showed the
averaged metabolite presence of cells in the cell type. B, Violin plot showing the gene expression level of metabolite sensors that was
used in significant communications predicted from Cold2 BAT scRNA-seq data. The x-axis represented the cell types, and y-axis
represented the sensor genes. The color of violin showed the averaged sensor gene expression of cells in the cell type.

https://www.biorxiv.org/content/biorxiv/early/2022/05/31/2022.05.30.494067/F8.large.jpg?width=800&height=600&carousel=1


2022/6/7 16:23 MEBOCOST: Metabolic Cell-Cell Communication Modeling by Single Cell Transcriptome | bioRxiv

13/30

Supplementary Figure 4.

The metabolite-sensor communications predicted by MEBOCOST in TN, RT, and Cold7 BAT.
A, C, E. Circle plot showing the cell-to-cell metabolite-sensor communications in TN, RT, and Cold7 BAT, respectively. Each dot was a
cell type. The size of dots represented the number of communications with other cell types. The directional line represented the
communication from sender cell type to receiver cell type. The line width indicated the number of metabolite-sensor communications
between a sender and a receiver. The color of lines showed the overall confidence which was calculated by the sum of -log10(FDR) of
all metabolite-sensor communications between a sender and a receiver. B, D, F, The number of communications for senders and
receivers were shown in bar-plots for TN, RT, and Cold7 BAT, respectively. The x-axis was the cell types in BAT scRNA-seq data. The
y-axis was the number of communications. The orange bars and purple bars were the number of communications for sender and
receiver cells, respectively.

https://www.biorxiv.org/content/biorxiv/early/2022/05/31/2022.05.30.494067/F9.large.jpg?width=800&height=600&carousel=1
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Figure 4.

Autocrine and paracrine of metabolite-sensor communications in brown adipose tissue from mouse exposed to cold
for 2-days.
A, Circle plot showing cell-to-cell metabolite-sensor communications in Cold2 BAT predicted by MEBOCOST. Each dot was a cell
type. The size of dots represented the number of communications with other cell types. The directional line represented the
communication from sender cell type to receiver cell type. The line width indicated the number of metabolite-sensor communications
between a sender and a receiver. The color of lines showed the overall confidence which was calculated by the sum of -log10(FDR) of
all metabolite-sensor communications between a sender and a receiver. B, The number of communications for senders and receivers
were shown in a bar-plot. The x-axis was the cell types in BAT scRNA-seq data. The y-axis was the number of communications. The
orange bars and purple bars were the number of communications for sender and receiver cells, respectively. C, A dot-plot showing the
communications between cell types in pairwise, where x-axis was the sender cell types, the y-axis was the receiver cell types. The dot
size indicated the number of metabolite-sensor communications between a sender and a receiver. The color of the dot represented the
overall confidence of communications between the sender and receiver. The calculation was the same with the overall confidence
showed in panel A. D, A dot-plot showing metabolite-sensor communications to adipocytes from adipocytes themselves and other cell
types. The rows were the metabolite-sensor partners, the columns are the sender cell types for adipocytes. The dot size indicated the
communication score calculated by MEBOCOST. The color of the dot was the - log10(FDR) for the metabolite-sensor communication.
E, A flow diagram showing the information flow of metabolite-sensor communications from sender cell type to receiver cell type
through metabolites and sensors. The size of dots represented the number of connections in the diagram, indicating the frequency of
usage among all the communications in the figure. The lines connect the sender, metabolite, sensor, and receiver. The color of the line
indicated the -log10(FDR) for the metabolite-sensor communication. The width of lines represented the communication score. Figure 5

In addition to autocrine, adipocytes received many paracrine-style metabolite-sensor

communications from other cell types in the brown adipose tissue. The most frequent sender

cell types for adipocytes were Pdgfra  APC, VSM, EC, MSC, NMSC, Activated CD8T, NK, and

Lymphatic EC (Figure 4C). Among these sender cells, the communications between vascular

system and adipocytes were well known . For instance, Jennifer H Hammel and Evangelia

Bellas reported that EC-adipocyte crosstalk can improve adipocyte browning, as proven based

on an EC-adipocyte co-culture system . Cholesterol-Scarb1 communication was reported to

+
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regulate EC functions  as well as adipocyte function , and were detected by

MEBOCOST for both cell types. Meanwhile, some senders were newly detected by MEBOCOST.

For instance, activated CD8 T cells, a subtype of CD8 T cells expressing cytotoxic markers,

were much less reported regarding metabolite-sensor communication with adipocytes in BAT.

Interestingly, 16 communications between activated CD8 T cells and adipocytes were detected

in Cold2 BAT, while only 8 communications were detected for naïve CD8 T cells (Figure 4C,

4D, 4E). This observation indicates that the role of activated CD8 T cells in the process of

thermogenesis is overlooked in the past. Strikingly, among all metabolite-sensor partners, the

communication score of dehydroascorbic acid and Slc2a4 were much higher than other

metabolite-sensor partners (Figure 4D-E). Such communications mediated by dehydroascorbic

acid and Slc2a4 were detected between Pdgfra  APC and Adipocytes, NMSC and Adipocytes, EC

and Adipocytes, VSM and Adipocytes, as well as Lymphatic EC and Adipocytes. Moreover, the

metabolite presence inference showed that dehydroascorbic acid was highly enriched in those

sender cells including Pdgfra  APC, NMSC, EC, and VSM when compared to other cell types.

Meanwhile, we found that Slc2a4 was also highly and specifically expressed in brown

adipocytes, indicating that those communications discussed above may function importantly

for adipocytes. In summary, the analysis of MEBOCOST based on Cold2 BAT scRNA-seq data

showed that the brown adipose resident cells frequently communicate with brown adipocytes

through metabolite-sensor patners.

Identification of cold temperature-sensitive metabolite-sensor communications in BAT

We next performed comparative analysis of metabolite-sensor communications in BAT among

the four conditions including TN, RT, Cold2, and Cold7. We constructed the landscape of

metabolite-sensor communications in BAT under the different conditions. BAT scRNA-seq data

from four conditions was analyzed by MEBOCOST separately. The total number of

communications increased during thermogenesis in response to cold exposure, especially by

the chronic cold exposure for 7 days (Figure 5A). In total, 1,032, 1,014, 1,296, and 1,557

communication events were detected in BAT under the TN, RT, Cold2, and Cold7 conditions,

respectively (Figure 5A). Many metabolites and sensors appeared to be cell type- and

condition-specific (Figure 5B, 5C). Furthermore, the composition of communications between

cell types was also dramatically changed by temperature. For instance, the

Basophils/Eosinophils received the largest number of communications from other cell types in

TN, while EC, Adipocytes, and VSM were the cell types receiving the most communications in

RT, Cold2, and Cold7, respectively. Similar changes were observed for senders. The MSC was

the most frequently used sender cell type in TN, while Pdgfra  APC, Adipocytes, and VSM were

identified to send the greatest number of metabolites to other cell types in RT, Cold2, and

Cold7, respectively. These results suggested that the metabolite-sensor communications in

mouse BAT were regulated by environment temperatures.

48-51 52, 53
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Figure 5.

Cold temperature-sensitive metabolite-sensor communications in brown adipose tissue.
A, A bar-plot showing the total number of communications detected by MEBOCOST in BAT scRNA-seq data. The x-axis was the four
conditions of BAT scRNA-seq data, including TN (30 °C for a week), RT (room temperature), Cold2(4 °C for 2 days), and Cold7 (4 °C
for 7 days). The y-axis was the total number of significant communications. A significant communication was defined if FDR < 0.05 and
the presence of metabolite and sensor in a cell type was at least in 25% of the cell population. B, A heatmap to show the estimated
metabolite presence. Columns were cell types in four conditions of BAT scRNA-seq data, rows were metabolites. The conditions and
cell types were colored on the top of the heatmap. C, A heatmap to show the gene expression level of metabolite sensors. Columns
were cell types in four conditions of BAT scRNA-seq data, rows were sensors. The conditions and cell types were colored on the top
of the heatmap. D, Metabolite-sensor communications were shown due to their high sensitivity to cold exposure. Each row
represented one cell-cell metabolite-sensor communication. The communication was defined as sender-metabolite-sensor-receiver. The
columns in the main heatmap were four conditions of scRNA-seq data. The sender and receiver cell types were colored at the left side
of the main heatmap. The black box with dashed lines labeled the Cold7 specifically enhanced communications, while the purple dashed
box labeled enhanced communications for both Cold2 and Cold7.

Next, to identify the temperature-sensitive metabolite-sensor communications, all cells from

the four conditions were pooled for MEBOCOST analysis and then grouped by cell types and

conditions. In such strategy, the communication score and p value of same metabolite-sensor

partners across conditions were comparable, because same population of cells were used for

the null distribution estimation. With the detected communications from the four conditions,

index of dispersion (IOD) of the communication scores was calculated to characterize the

sensitivity of communications to cold exposure. 100 temperature-sensitive communications

were identified as with communication scores highly variable across conditions (Figure 5D).

Interestingly, we observed that some of the communications showed increased communication

score under any of the two types of cold exposure including both Cold2 and Cold7, while

some other communications were strongly and specifically increased by chronic cold exposure

https://www.biorxiv.org/content/biorxiv/early/2022/05/31/2022.05.30.494067/F5.large.jpg?width=800&height=600&carousel=1
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in Cold7. Among the Cold7-specific increased communications, NMSC was a major sender

compared to other cell types, indicating that chronic cold exposure may increase the secretion

of signaling metabolites from NMSC and increase its effects on other adipose-resident cells.

Altogether, MEBOCOST enabled detection of condition-specific cell-cell metabolite-sensor

communications in brown adipose tissue.

Discussion

Cell-cell communication is a fundamental mechanism that coordinates cellular activities in

development and disease . In addition to protein ligands, metabolites are another major type

of signaling molecules to mediate cell-cell communications, which are studied extensively

based on experimental approaches. However, few computational tools were appliable to study

metabolite-based intercellular communications based on single cell RNA-seq data. Motivated

by the fundamental importance of metabolic communications in development and diseases,

we developed MEBOCOST was to fill up the technology gap to infer the intercellular metabolite-

sensor communications using scRNA-seq. To this end, we first constructed a metabolite-sensor

partner database, which covered sensor types including cell surface receptor, cell surface

transporter, and nuclear receptor. We developed the first computational tool that perform

thorough literature mining to collect reported metabolite-sensor partners from literature. The

collected metabolite-sensor partners provided a new foundation of knowledge for investigating

cell-cell metabolite-sensor communications. Having those partners, communication scores

were calculated based on the expression of metabolic enzymes and sensors for each pair of

cell types and each pair of metabolite-sensor to characterize the communication likelihood. By

applying to a BAT scRNA-seq datasets, MEBOCOST successfully recaptured known metabolite-

sensor communications and further uncovered new communications. We demonstrated that

MEBOCOST is a versatile and easy-to-use Python-based package to perform cell-cell metabolic

communication analysis. MEBOCOST enables researchers to analyze cell-cell metabolite-sensor

communications by scRNA-seq data in numerous human and mouse samples.

As far as we known, MEBOCOST is the first computational algorithm for genome-scale

systematic detection of cell-cell metabolite-sensor communications. Although the current

version has already enabled the prediction of cell-cell communications for 440 metabolite-

sensor partners, a further extension of metabolite-sensor partners will increase the capability

of MEBOCOST. We plan to enlarge the number of metabolite-sensor partners through two

aspects in the future. First, we will increase the number of extracellular metabolites by

integrating more metabolite resources such as HMDB, Recon2, Metabolic Atlas, etc. Second, we

plan to optimize the text-mining pipeline to improve the recognition of metabolite-sensor

partners. For example, we will enable the pipeline to use synonymous of metabolites and

6
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sensors to parse the metabolite-sensor partners from PubMed abstract. Also, due to the

complicated biological mechanism of cellular communication, taking more information into

consideration in communication prediction will increase the performance of the algorithm. Cell

surface transporter or receptor for metabolites might function by a protein complex. For

example, SLC7A11 is a cell surface transporter for Cysteine curated in our database, and

SLC3A2 is an extra need for forming the SLC7A11 mediated metabolite-sensor

communications . Therefore, it might be useful to improve MEBOCOST by incorporating the

protein complex information of sensors into the calculation of communication score. Finally,

MEBOCOST infers potential metabolite-sensor communications using single cell

transcriptomics data without considering the spatial proximity of the cells. Although a robust

performance has been observed in the current MEBOCOST, we believe that it will have the

potential to provide a more comprehensive view of metabolite-sensor communications by

combining spatial distribution of the cells into consideration.

Methods and Materials

Software and package version

Cellranger 6.1.2, scFEA 1.1.2, COMPASS (https://github.com/YosefLab/Compass), Python 3.8,

and python packages including pandas 1.4.1, scipy 1.8.0, scanpy 1.8.2, matplotlib 3.5.1,

seaborn 0.11.2, adjustText 0.7.3, network 2.7, jupyter 1.0.0.

Collection of extracellular metabolites and related enzyme genes

We were motivated to focus on metabolites that are predictable from gene expression data.

scFEA and COMPASS are two software for metabolic flux-balance analysis in scRNA-seq data.

The metabolites involved in the two software were focused on. Specifically, the metabolite

names and their annotation information in scFEA were downloaded from

https://github.com/changwn/scFEA/blob/master/data/Human_M168_information.symbols.csv

.

The metabolite name and annotation in COMPASS were downloaded from

https://github.com/YosefLab/Compass/blob/master/compass/Resources/Recon2_export/met

_md.csv. We noticed that HMDB at https://hmdb.ca/ is a comprehensive database that include

detailed annotation for 220,945 metabolites. Therefore, we decided to standardize the

collected metabolite names from both scFEA and COMPASS into the annotation provided by

HMDB. To do this, we focused on the metabolites for which the HMDB accession number was

known. HMDB accessions of metabolites can be directly accessed in COMPASS, while only

KEGG accessions were provided for scFEA metabolites. To map those scFEA metabolites into

HMDB annotation, a parser script was developed to covert KEGG compound accession number

54
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into HMDB accession number. Taking Acetyl-CoA as an example, C00024 is the KEGG

compound accession number, and the KEGG page of C00024 was derived by link of

https://www.genome.jp/entry/C00024. The related annotation in HMDB for Acetyl-CoA can be

further derived by hyperlinks at “All links” session. In this specific case, the HMDB accession

number for Acetyl-CoA can be collected from https://www.genome.jp/dbget-bin/get_linkdb?-

t+hmdb+cpd:C00024. We applied the strategy for all the metabolites from scFEA to find their

the HMDB accessions. For those metabolites that were successfully mapped to HMDB,

biological location annotation, including cellular locations and biospecimen locations, were

extracted. To focus on potential intercellular signaling metabolites, the metabolites in

“extracellular space”, “blood”, or “cerebrospinal fluid” were retained and named as

“extracellular metabolites”. Meanwhile, other basic annotation information for those

metabolites were also collected, such as synonyms, metabolite class, and protein associations.

To collect metabolite enzymes, we focused on the extracellular metabolites collected by the

procedures mentioned in above. A parser script was designed specifically for HMDB to collect

the reaction and related enzymes of extracellular metabolites. Briefly, the webpage of

metabolite in HMDB was visited based on the given HMDB accession number, and the

annotation in “Enzymes” sessions was collected. Taking D-Lactic acid as an example, the

annotation page of D-Lactic acid can be retrieved by

https://hmdb.ca/metabolites/HMDB0001311 where HMDB0000171 is the HDMB accession

number. In the “Enzymes” tab, the reactions such as “S-Lactoylglutathione + Water →

Glutathione + D-Lactic acid” and the related gene name (e.g. HAGH) for the reactions were

collected. Only complete reactions containing subtract metabolite names and product

metabolite names were included in the collection. Such procedures produce a list of reactions

as well as the corresponding enzyme gene names and metabolite names. The collection of

reaction and related enzymes were used for the inference of metabolite presence.

Collection of metabolite-sensor partners

The detection of metabolite-based intercellular communications relied on the prior knowledge

of metabolite-sensor partners. The sensor proteins in this study mainly include three types,

namely, cell surface transporter, cell surface receptor, and nuclear receptors. To collect known

pairs of metabolite-sensor partners, a workflow that combines computational text-mining and

manual collection was designed. In the text-mining part, a list of metabolites and a list of

sensor gene names were needed. Publicly reported pairs of metabolite and sensor will be

recognized and curated at the manual collection step of the workflow. To initiate the text-

mining, extracellular metabolites were focused on. Additionally, sensor gene names were

collected by the following steps. For cell surface receptor, we obtained the list of receptor

names mainly from two sources. Firstly, we downloaded a list of receptors from NicheNet , a55

https://www.biorxiv.org/lookup/external-ref?link_type=GEN&access_num=C00024&atom=%2Fbiorxiv%2Fearly%2F2022%2F05%2F31%2F2022.05.30.494067.atom
https://www.genome.jp/entry/C00024
https://www.genome.jp/dbget-bin/get_linkdb?-t+hmdb+cpd:C00024
https://hmdb.ca/metabolites/HMDB0001311
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protein ligand-receptor communication analysis R package, by taking the “to” genes in file of

https://zenodo.org/record/3260758/files/lr_network.rds. Secondly, we collected receptor

genes from UniProt database  by searching for the keyword “receptor” through

https://www.uniprot.org/uniprot/?

query=name%3Areceptor+reviewed%3Ayes+organism%3A%22Homo+sapiens+%28Human%29+%

5B9606%5D%22&sort=score. The receptors from the two sources were united and further

filtered by focusing on cell membrane proteins based on the cellular location annotation in

UniProt database. For cell surface transporters, we noticed that Transporter Classification

Database (TCDB)  contains a comprehensive list of transporter proteins; thus, transporter

gene names from TCDB were collected. For nuclear receptors, Nuclear Receptor Signaling Atlas

(NURSA)  in dkNET project at https://dknet.org/data/source/nif-0000-03208-6/search was

used for collecting known names of nuclear receptor names.

Having the names of metabolites and sensors, text-mining based on PubMed abstracts were

performed. Firstly, 711,272 PubMed abstracts with unique PMID were obtained from

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?

db=pubmed&term=%28metabolism%5BTitle%2FAbstract%5D%29&retmax=15000000. We

started from those abstracts as they were related to metabolism. Such strategy helped us to

narrow down to a subset of abstracts, thus reduced the time of text-mining compared to going

through all the abstracts in the PubMed. Secondly, the context of publication titles, MeSH

words, and abstracts was downloaded for those PMID. Thirdly, potential combinations of

metabolite and sensor names was checked in each of the collected context of publication

titles, MeSH words, and abstracts. The PMID, metabolite names, and sensor names were

recorded if the pair of metabolite name and sensor name were co-mentioned in the same

sentence in the context of publication titles, MeSH words, and abstracts. Next, the collected

pairs of metabolite-sensor partners together with the PMID and evidence in the context of

publication title, MeSH words, or abstracts were subjected to a manual curation.

Besides the text-mining, we also manually collected metabolite-sensor partners from other

well-known databases such as HMDB , Recon2 , GPCRdb , Wikipedia, and

GeneCards . For HMDB, we collected metabolite and transporter pairs if the metabolite

associated protein were annotated as a transporter and the protein belongs to a type of cell

membrane protein. For Recon2, since metabolites were further annotated by cellular

localization such as [e] for extracellular and [c] for cytosol, so we specifically collected the

reaction associated genes if the reaction happened by transporting the same metabolite from

extracellular [e] into cytosol [c]. However, cell surface receptors and nuclear receptors were not

included in both HMDB  and Recon2 . Therefore, pairs of metabolite and cell surface

transporter partners were mainly focused on those from these two databases. We additionally

collected metabolite and cell surface receptor partners from GPCRdb  which is a database
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for G protein-coupled receptors (GPCR) basic annotation and their ligands. The metabolite

ligand of the GPCR protein were collected from the webpage at

https://gpcrdb.org/ligand/statistics if the metabolite is an extracellular metabolite.

Additionally, one pair of metabolite-sensor partner, pyruvic acid and SLC16A11, was collected

from the Gene Card database by reading the description of SLC1611 at

https://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC16A11. Next, we manually collected

metabolite and nuclear receptor partners from a Wikipedia page at

https://en.wikipedia.org/wiki/Nuclear_receptor#Ligands. To this end, the preliminary

automatic and manual collection of metabolite-sensor partners were completed. All the

metabolite-sensor partners were then further manually curated by not less than three curators

separately. Notably, the species and cell type were not restricted during the process of text-

mining and manually collection, although the metabolite enzymes and sensor names were

obtained mostly from databases for human. To generate a collection for mouse, the collected

metabolite enzyme genes and metabolite sensor genes were match to mouse by homology

gene pairs between human and mouse.

Infering metabolite presence in a cell based on gene expression of enzymes

Estimation of metabolite presence is a key step in MEBOCOST algorithm. Although several

software, such as scFBA, scFEA, and COMPASS have been reported to predict metabolic fluxes

by scRNA-seq data, none of them were specifically designed for estimating the metabolite

distribution (Supplementary Figure 1C). Although the balance result in scFEA and uptake

reaction result in COMPASS can be treated as metabolite abundance as a by-product of the

prediction, those tools still have limitations to be fully integrated into MEBOCOST. For

example, scFEA predicts only less than 100 metabolites, and COMPASS algorithm was

computing intensive so that takes more than 1,000 seconds to run the prediction for a

metabolite in 1,000 cells (Supplementary Figure 1E). Therefore, we hope to find a method

that can predict the metabolite abundance in a cell by scRNA-seq data with less running time

but without losing the accuracy compared to the existing tools.

Although we did not incorporate the running of scFEA and COMPASS in MEBOCOST running,

the development of such tools showed the power of gene expression of metabolic enzymes on

metabolism modeling. We reasoned that the level of a given metabolite in a cell should be

dynamically influenced by two types of metabolism reactions. Some metabolism reactions take

the metabolites as products; thus, the expression of the enzymes should correlate with the

accumulation of the metabolites. Some other metabolism reactions may take the metabolites

as substrates. The happening of such reactions will convert the given metabolites into other

ones, so the enzyme gene expression should correlate with the depletion of the metabolites of

interest. Therefore, the relative presence of a given metabolite in a cell can be estimated by

https://gpcrdb.org/ligand/statistics
https://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC16A11
https://en.wikipedia.org/wiki/Nuclear_receptor#Ligands


2022/6/7 16:23 MEBOCOST: Metabolic Cell-Cell Communication Modeling by Single Cell Transcriptome | bioRxiv

22/30

the average expression of enzymes in reactions that take the metabolite as a product after

subtracting the average expression of enzymes in reactions that take the metabolite as a

substrate. The estimation of metabolite presence based on enzyme gene expression was

formulated as:

where Mis the estimated presence of a given metabolite in a cell. P is a set of enzyme genes

that associated with the accumulation of the metabolite. i is the i  enzyme gene in the P. l  is

the total number of enzyme genes in the P. In addition, S is a set of enzyme genes that

associated with the depletion of the metabolite. j is the j  enzyme gene in the S. l  is the total

number of enzyme genes in the S. x  and x  are the expression level of enzyme iand j in a cell.

MEBOCOST applied this formula to calculate the relative presence of each metabolite in each

cell by scRNA-seq data.

To test the proposed method together with scFEA and COMPASS, we downloaded matched

metabolomics and RNA-seq data of 928 cancer cell lines from CCLE project . The

metabolomics data was downloaded by https://depmap.org/portal/download/api/download?

file_name=ccle%2Fccle_2019%2FCCLE_metabolomics_20190502.csv&bucket=depmap-external-

downloads. The RNA-seq data was downloaded from DepMap data portal at

https://depmap.org/portal/download/ (file named CCLE_expression.csv). Next, we applied

scFEA, COMPASS, and our method on the expression matrix of the RNA-seq data to estimate

the metabolite level in each cell line. In addition to taking the average (arithmetic mean) of the

enzyme expression, we also calculated the geometric mean of the enzyme gene expression in

the estimation as a comparison. To evaluate the similarity between the estimation and the real

detection of metabolomics, the Jaccard index between the results of estimation and detection

was calculated for each metabolite. To calculate the Jaccard index, metabolite abundant cell

lines were obtained for each estimation method as well as the real metabolomics data. Among

the 910 cell lines, a metabolite abundant cell line was counted if the value of a given

metabolite above the mean value of all the cell lines. For each metabolite, the metabolite

abundant cell lines from estimation data can be donated as A, and the metabolite abundant

cell lines from metabolomics was donated as B. The Jaccard index score J was calculated by

Interestingly, the Jaccard index value of methods by calculating mean expression of enzyme

genes showed quiet compatible result with scFEA and slightly better result than COMPASS

(Supplementary Figure 1D). However, the method of taking arithmetic mean of enzyme gene

expression saved many time for the computing (Supplementary Figure 1E).

Calculation of metabolic communication scores
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Having the estimation of metabolite presence from gene expression data and the prior

knowledge of metabolite-sensor partners, MEBOCOST computed the communication score for

each pair of cell types and for each pair of metabolite-sensor partners. Given a pair of cell

types i and j, and given a pair of metabolite-sensor partners which metabolite was donated as

m, and sensor was donated as s. We donated as the mean metabolite abundance in cell type i,

and as the mean expression level of sensor gene in cell type j. Then, the communication score

S  was computed as the following:

The communication score was computed for cell types in pairwise and for each pair of

metabolite-sensor partners, so that the MEBOCOST give equal change for each cell type as a

sender or as a receiver in all calculations. To evaluate the statistical significance, we performed

a shuffling on cell labels of the scRNA-seq data by default 1,000 times. The users are allowed

to change the time of cell label shuffling. For each cell type pair and each metabolite-sensor

partner, the same method was applied to calculate the communication score for the shuffled

scRNA-seq data. This procedure generated 1,000 communication scores as a statistical null

distribution for each cell type pair and each metabolite-sensor partner. Based on the null

distribution, p value was computed by permutation testing . All the p values in the datasets

were subjected to a false discovery rate (FDR) correction by Benjamini-Hochberg procedure .

We reasoned that the baseline level of metabolites and sensors could be vary a lot. To reduce

the bias of communication scores from the baseline, the real communication score was further

normalized by the mean of 1,000 communication scores calculated from shuffled data.

Furthermore, to increase the statistical power of the prediction, we focused on the highly

abundant metabolites and highly expressed sensors in the cell type. By default, the metabolite

and sensor were considered as informative if they were both active in at least 25% of the cell

population of the cell type, else the p value and FDR will be converted to 1.

Single cell RNA-seq data processing

A single cell RNA-seq data of mouse brown adipose tissue was used in the current study. The

dataset was generated by 10X Genomics platform. Raw data was deposited to NCBI GEO

database under accession number GSE160585. Cellranger count was applied to map the raw

sequence to mouse reference genome (mm10) and obtain read count over each gene, and r1-

length parameter was set to 26, while other parameters were set by default. Next, the data

processing, including data normalization, dimension reduction, clustering, and visualization of

gene expression were performed using Scanpy  in Python. Cells were filtered to have at least

800 UMIs and 400 detected genes. Genes were filtered to be at least detected in 10 cells. To

reduce the doublet effect, cells were removed if the total UMIs greater than 50,000 or the

number of detected genes greater than 7500. The number of nearest neighbors was set to 10

c
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in Scanpy find neighbor function. The top 40 principal components were included in clustering

and UMAP analysis . The visualization of the clusters was performed by the UMAP method.

Cell annotation was done based on the cell type marker genes collected from PanglaoDB  at

https://panglaodb.se/markers.html.

Evaluation of running time and memory usage in peak

We tested MEBOCOST on the BAT scRNA-seq data from mouse housed at cold temperature for

2 days (Cold2) . The dataset contains 33,470 cells and 20 cell types including adipocytes. To

evaluate the usage of computing resource of our algorithm on different cell numbers, 90%,

80%, 70%, 60%, 50%, 40%, 30% of the total number of cells were subsampled. Next, MEBOCOST

was applied on the original Cold2 dataset as well as the subsampling dataset. All the jobs were

run at same computing server with 8 cores. The running time were recorded by python “time”

module, and the peak memory usage were also recorded by the python “tracemalloc” module.

The running time in minutes and the peak memory usage in Gb were showed by bar plot using

Python “matplotlib” package.

Stability evaluation

The prediction result of cell-cell metabolic communications in Cold2 original dataset and

subsampling datasets were further used to evaluate the stability of MEBOCOST. We reasoned

that a good algorithm should be less influenced by the sequencing depth and the total cell

number of scRNA-seq. Therefore, we compared the prediction results of subsampling datasets

with the result of original dataset in two aspects. First, we compared the total number of

significant communication events between subsampling datasets and original datasets. The

communications were deemed significant at a False Discovery Rate (FDR) of 0.05 and 25% of

metabolite and sensor active cells in the cell type. Second, the similarity score between the

prediction result of subsampling datasets and the original dataset was calculated. The

similarity score S was computed based on the overlap of communications via the Jaccard

similarity defined by:

where the V and V′ are two sets of intercellular communication events predicted from original

dataset and subsampling dataset, respectively.

Identification of most cold-sensitive communication events

All the cells of BAT scRNA-seq data from TN, RT, Cold2, and Cold7 were pooled and grouped

by cell types and conditions when running MEBOCOST. Communications were deemed as

significant if FDR less than 0.05 and the fraction of metabolite and sensor active cells greater

than
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0.25. Index of dispersion (IOD) was calculated using communication score across four

conditions. Given one sender-metabolite-sensor-receiver communication, the IOD was defined

by:

where σ  is the variance of the four communication score, μ is the mean of the four

communication score. Sender-metabolite-sensor-receiver communications included in this

cold-sensitive communication analysis were predicted as significant at least in one of the four

conditions. The IOD scores of communications were ranked from high to low, and 100 top-

ranked were selected as cold-sensitive communications.

Code availability and data availability

All the analysis including MEBOCOST were implemented by Python. The collected enzyme and

sensor genes of extracellular metabolites, source code of MEBOCOST, and the detailed

instruction of usage were available at https://github.com/zhengrongbin/MEBOCOST. The

singe cell RNA-seq data of mouse brown adipose tissue was deposited to NCBI GEO under

accession GSE160585.
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Abbreviations

EC

Endothelial cells

CD8T

CD8  T lymphocytes

Activated CD8T

2

+
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Activated CD8 T lymphocytes

CD4T

CD4  T lymphocytes

Erythroid-like

Erythroid-like and erythroid precursor cells

NK

Natural killer cells

MSC

Myelinating Schwann cells

NMSC

Non-myelinating Schwann cells

Treg

Regulatory T cells

VSM

Vascular smooth muscle cells

ILC2s

Type 2 innate lymphoid cells

BAT

Brown adipose tissue

TN

Thermoneutral

RT

Room temperature

Cold2

Cold temperature for 2 days

Cold7

Cold temperature for 2 days
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